
OpenCV 4.4 Graph API

Overview and programming by example

Dmitry Matveev
Intel Corporation

September 4, 2020

Outline

G-API: What is, why, what’s for?

Programming with G-API

Inference and Streaming

Latest features

Understanding the "G-Effect"

Resources on G-API

Thank you!

OpenCV 4.4 G-API: Overview and programming by example 1

G-API: What is, why, what’s for?

OpenCV evolution in one slide

Version 1.x – Library inception

• Just a set of CV functions + helpers around (visualization, IO);

Version 2.x – Library rewrite

• OpenCV meets C++, cv::Mat replaces IplImage*;

Version 3.0 – Welcome Transparent API (T-API)

• cv::UMat is introduced as a transparent addition to cv::Mat;

• With cv::UMat, an OpenCL kernel can be enqeueud instead
of immediately running C code;

• cv::UMat data is kept on a device until explicitly queried.

OpenCV 4.4 G-API: Overview and programming by example 2

OpenCV evolution in one slide (cont’d)

Version 4.0 – Welcome Graph API (G-API)

• A new separate module (not a full library rewrite);

• A framework (or even a meta-framework);

• Usage model:
• Express an image/vision processing graph and then execute it;
• Fine-tune execution without changes in the graph;

• Similar to Halide – separates logic from platform details.

• More than Halide:
• Kernels can be written in unconstrained platform-native code;
• Halide can serve as a backend (one of many).

OpenCV 4.4 G-API: Overview and programming by example 3

OpenCV evolution in one slide (cont’d)

Version 4.2 – New horizons

• Introduced in-graph inference via OpenVINO™ Toolkit;

• Introduced video-oriented Streaming execution mode;

• Extended focus from individual image processing to the full
application pipeline optimization.

Version 4.4 – More on video

• Introduced a notion of stateful kernels;
• The road to object tracking, background subtraction, etc. in

the graph;

• Added more video-oriented operations (feature detection,
Optical flow).

OpenCV 4.4 G-API: Overview and programming by example 4

Why G-API?

Why introduce a new execution model?

• Ultimately it is all about optimizations;
• or at least about a possibility to optimize;

• A CV algorithm is usually not a single function call, but a
composition of functions;

• Different models operate at different levels of knowledge on
the algorithm (problem) we run.

OpenCV 4.4 G-API: Overview and programming by example 5

Why G-API? (cont’d)

Why introduce a new execution model?

• Traditional – every function can be optimized (e.g. vectorized)
and parallelized, the rest is up to programmer to care about.

• Queue-based – kernels are enqueued dynamically with no
guarantee where the end is or what is called next;

• Graph-based – nearly all information is there, some compiler
magic can be done!

OpenCV 4.4 G-API: Overview and programming by example 6

What is G-API for?

Bring the value of graph model with OpenCV where it makes
sense:

• Memory consumption can be reduced dramatically;

• Memory access can be optimized to maximize cache reuse;

• Parallelism can be applied automatically where it is hard to do
it manually;

• It also becomes more efficient when working with graphs;

• Heterogeneity gets extra benefits like:
• Avoiding unnecessary data transfers;
• Shadowing transfer costs with parallel host co-execution;
• Improving system throughput with frame-level pipelining.

OpenCV 4.4 G-API: Overview and programming by example 7

Programming with G-API

G-API Basics

G-API Concepts

• Graphs are built by applying operations to data objects;
• API itself has no "graphs", it is expression-based instead;

• Data objects do not hold actual data, only capture
dependencies;

• Operations consume and produce data objects.

• A graph is defined by specifying its boundaries with data
objects:

• What data objects are inputs to the graph?
• What are its outputs?

OpenCV 4.4 G-API: Overview and programming by example 8

The code is worth a thousand words

#include <opencv2/gapi.hpp> // G-API framework header
#include <opencv2/gapi/imgproc.hpp> // cv::gapi::blur()
#include <opencv2/highgui.hpp> // cv::imread/imwrite

int main(int argc, char *argv[]) {
if (argc < 3) return 1;

cv::GMat in; // Express the graph:
cv::GMat out = cv::gapi::blur(in, cv::Size(3,3)); // ‘out‘ is a result of ‘blur‘ of ‘in‘

cv::Mat in_mat = cv::imread(argv[1]); // Get the real data
cv::Mat out_mat; // Output buffer (may be empty)

cv::GComputation(cv::GIn(in), cv::GOut(out)) // Declare a graph from ‘in‘ to ‘out‘
.apply(cv::gin(in_mat), cv::gout(out_mat)); // ...and run it immediately

cv::imwrite(argv[2], out_mat); // Save the result
return 0;

}

OpenCV 4.4 G-API: Overview and programming by example 9

The code is worth a thousand words

Traditional OpenCV

#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>

#include <opencv2/highgui.hpp>

int main(int argc, char *argv[]) {
using namespace cv;
if (argc != 3) return 1;

Mat in_mat = imread(argv[1]);
Mat gx, gy;

Sobel(in_mat, gx, CV_32F, 1, 0);
Sobel(in_mat, gy, CV_32F, 0, 1);

Mat mag, out_mat;
sqrt(gx.mul(gx) + gy.mul(gy), mag);
mag.convertTo(out_mat, CV_8U);

imwrite(argv[2], out_mat);
return 0;

}

OpenCV G-API

#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/highgui.hpp>

int main(int argc, char *argv[]) {
using namespace cv;
if (argc != 3) return 1;

GMat in;
GMat gx = gapi::Sobel(in, CV_32F, 1, 0);
GMat gy = gapi::Sobel(in, CV_32F, 0, 1);
GMat mag = gapi::sqrt(gapi::mul(gx, gx)

+ gapi::mul(gy, gy));
GMat out = gapi::convertTo(mag, CV_8U);
GComputation sobel(GIn(in), GOut(out));

Mat in_mat = imread(argv[1]), out_mat;
sobel.apply(in_mat, out_mat);
imwrite(argv[2], out_mat);
return 0;

}

OpenCV 4.4 G-API: Overview and programming by example 10

The code is worth a thousand words (cont’d)

What we have just learned?

• G-API functions mimic their traditional OpenCV ancestors;

• No real data is required to construct a graph;

• Graph construction and graph execution are separate steps.

What else?

• Graph is first expressed and then captured in an object;

• Graph constructor defines protocol; user can pass vectors of
inputs/outputs like

cv::GComputation(cv::GIn(...), cv::GOut(...))

• Calls to .apply() must conform to graph’s protocol

OpenCV 4.4 G-API: Overview and programming by example 11

On data objects

Graph protocol defines what arguments a computation was defined
on (both inputs and outputs), and what are the shapes (or types)
of those arguments:

Shape Argument Size
GMat Mat Static; defined during

graph compilation
GScalar Scalar 4 x double
GArray<T> std::vector<T> Dynamic; defined in runtime
GOpaque<T> T Static, sizeof(T)

GScalar may be value-initialized at construction time to allow
expressions like GMat a = 2*(b + 1).

OpenCV 4.4 G-API: Overview and programming by example 12

On operations and kernels

• Graphs are built with Operations
over virtual Data;

• Operations define interfaces
(literally);

• Kernels are implementations to
Operations (like in OOP);

• An Operation is
platform-agnostic, a kernel is not;

• Kernels are implemented for
Backends, the latter provide APIs
to write kernels;

• Users can add their own
operations and kernels, and also
redefine "standard" kernels their
own way.

Graph

Operation
A

’consists of’

Kernel
A:2

Kernel
A:1

’is implemented by’

Abstract:
declared via
G_API_OP()

Platform:
defined with

OpenCL backend

Platform:
defined with

OpenCV backend

OpenCV 4.4 G-API: Overview and programming by example 13

On operations and kernels (cont’d)

Defining an operation

• A type name (every operation is a C++ type);

• Operation signature (similar to std::function<>);

• Operation identifier (a string);

• Metadata callback – describe what is the output value
format(s), given the input and arguments.

• Use OpType::on(...) to use a new kernel OpType to
construct graphs.

G_API_OP(GSqrt,<GMat(GMat)>,"org.opencv.core.math.sqrt") {
static GMatDesc outMeta(GMatDesc in) { return in; }

};

OpenCV 4.4 G-API: Overview and programming by example 14

On operations and kernels (cont’d)

GSqrt vs. cv::gapi::sqrt()

• How a type relates to a functions from the example?
• These functions are just wrappers over ::on:

G_API_OP(GSqrt,<GMat(GMat)>,"org.opencv.core.math.sqrt") {
static GMatDesc outMeta(GMatDesc in) { return in; }

};
GMat gapi::sqrt(const GMat& src) { return GSqrt::on(src); }

• Why – Doxygen, default parameters, 1:n mapping:
cv::GMat custom::unsharpMask(const cv::GMat &src,

const int sigma,
const float strength) {

cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
cv::GMat laplacian = cv::gapi::Laplacian(blurred, CV_8U);
return (src - (laplacian * strength));

}

OpenCV 4.4 G-API: Overview and programming by example 15

On operations and kernels (cont’d)

Implementing an operation

• Depends on the backend and its API;

• Common part for all backends: refer to operation being
implemented using its type.

OpenCV backend

• OpenCV backend is the default one: OpenCV kernel is a
wrapped OpenCV function:
GAPI_OCV_KERNEL(GCPUSqrt, cv::gapi::core::GSqrt) {

static void run(const cv::Mat& in, cv::Mat &out) {
cv::sqrt(in, out);

}
};

OpenCV 4.4 G-API: Overview and programming by example 16

Operations and Kernels (cont’d)

Fluid backend

• Fluid backend operates with row-by-row kernels and schedules
its execution to optimize data locality:
GAPI_FLUID_KERNEL(GFluidSqrt, cv::gapi::core::GSqrt, false) {

static const int Window = 1;
static void run(const View &in, Buffer &out) {

hal::sqrt32f(in .InLine <float>(0)
out.OutLine<float>(0),
out.length());

}
};

• Note run changes signature but still is derived from the
operation signature.

OpenCV 4.4 G-API: Overview and programming by example 17

Operations and Kernels (cont’d)

Specifying which kernels to use

• Graph execution model is defined by kernels which are
available/used;

• Kernels can be specified via the graph compilation arguments:
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/fluid/imgproc.hpp>
...
auto pkg = cv::gapi::combine(cv::gapi::core::fluid::kernels(),

cv::gapi::imgproc::fluid::kernels());
sobel.apply(in_mat, out_mat, cv::compile_args(pkg));

• Users can combine kernels of different backends and G-API will
partition the execution among those automatically.

OpenCV 4.4 G-API: Overview and programming by example 18

Heterogeneity in G-API

Automatic subgraph partitioning in G-API

A

GMat1

B

GMat2

C

GMat3

GMat0

The initial graph:
operations are not
resolved yet.

A

GMat1

B

GMat2

C

GMat3

GMat0

All operations are
handled by the
same backend.

A

GMat1

B

GMat2

C

GMat3

GMat0

A & B are of
backend 1, C is of
backend 2.

A

GMat1

B

GMat2

C

GMat3

GMat0

A & C are of
backend 1, B is of
backend 2.

OpenCV 4.4 G-API: Overview and programming by example 19

Heterogeneity in G-API

Heterogeneity summary

• G-API automatically partitions its graph in subgraphs (called
"islands") based on the available kernels;

• Adjacent kernels taken from the same backend are "fused"
into the same "island";

• G-API implements a two-level execution model:
• Islands are executed at the top level by a G-API’s Executor;
• Island internals are run at the bottom level by its Backend;

• G-API fully delegates the low-level execution and memory
management to backends.

OpenCV 4.4 G-API: Overview and programming by example 20

Inference and Streaming

Inference with G-API

In-graph inference example

• Starting with OpencV 4.2 (2019), G-API allows to integrate
infer operations into the graph:
G_API_NET(ObjDetect, <cv::GMat(cv::GMat)>, "pdf.example.od");

cv::GMat in;
cv::GMat blob = cv::gapi::infer<ObjDetect>(bgr);
cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(bgr);
cv::GArray<cv::Rect> objs = cv::gapi::streaming::parseSSD(blob, size);
cv::GComputation pipelne(cv::GIn(in), cv::GOut(objs));

• Starting with OpenCV 4.5 (2020), G-API will provide more
streaming- and NN-oriented operations out of the box.

OpenCV 4.4 G-API: Overview and programming by example 21

Inference with G-API

What is the difference?

• ObjDetect is not an operation, cv::gapi::infer<T> is;

• cv::gapi::infer<T> is a generic operation, where
T=ObjDetect describes the calling convention:

• How many inputs the network consumes,
• How many outputs the network produces.

• Inference data types are GMat only:
• Representing an image, then preprocessed automatically;
• Representing a blob (n-dimensional Mat), then passed as-is.

• Inference backends only need to implement a single generic
operation infer.

OpenCV 4.4 G-API: Overview and programming by example 22

Inference with G-API

But how does it run?

• Since infer is an Operation, backends may provide Kernels
implenting it;

• The only publicly available inference backend now is
OpenVINO™:

• Brings its infer kernel atop of the Inference Engine;

• NN model data is passed through G-API compile arguments
(like kernels);

• Every NN backend provides its own structure to configure the
network (like a kernel API).

OpenCV 4.4 G-API: Overview and programming by example 23

Inference with G-API

Passing OpenVINO™ parameters to G-API

• ObjDetect example:
auto face_net = cv::gapi::ie::Params<ObjDetect> {

face_xml_path, // path to the topology IR
face_bin_path, // path to the topology weights
face_device_string, // OpenVINO plugin (device) string

};
auto networks = cv::gapi::networks(face_net);
pipeline.compile(.., cv::compile_args(..., networks));

• AgeGender requires binding Op’s outputs to NN layers:
auto age_net = cv::gapi::ie::Params<AgeGender> {

...
}.cfgOutputLayers({"age_conv3", "prob"}); // array<string,2> !

OpenCV 4.4 G-API: Overview and programming by example 24

Streaming with G-API

Capture Decode Resize Infer Visualize

Anatomy of a regular video analytics application

OpenCV 4.4 G-API: Overview and programming by example 25

Streaming with G-API

Frame N-1 Frame N Frame N+1

... V C D R I V C ...

Serial execution of the sample video analytics application

OpenCV 4.4 G-API: Overview and programming by example 26

Streaming with G-API

Camera: C6

GPU: DR5

FPGA: F4

CPU:

Time:

V3

T6 T7 T8 T9 T10 ...

V4

F5

V5

DR6

F6

V6

C7

DR7

F7

V7

C8

DR8

F8

C9

DR9

C10

Pipelined execution for the video analytics application

OpenCV 4.4 G-API: Overview and programming by example 27

Streaming with G-API: Example

Serial mode (4.0)

pipeline = cv::GComputation(...);

cv::VideoCapture cap(input);
cv::Mat in_frame;
std::vector<cv::Rect> out_faces;

while (cap.read(in_frame)) {
pipeline.apply(cv::gin(in_frame),

cv::gout(out_faces),
cv::compile_args(kernels,

networks));
// Process results
...

}

Streaming mode (since 4.2)

pipeline = cv::GComputation(...);

auto in_src = cv::gapi::wip::make_src
<cv::gapi::wip::GCaptureSource>(input)

auto cc = pipeline.compileStreaming
(cv::compile_args(kernels, networks))

cc.setSource(cv::gin(in_src));
cc.start();

std::vector<cv::Rect> out_faces;
while (cc.pull(cv::gout(out_faces))) {

// Process results
...

}

More information
https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/

OpenCV 4.4 G-API: Overview and programming by example 28

https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/

Latest features

Latest features

Python API

• Initial Python3 binding is available now in master (future 4.5);

• Only basic CV functionality is supported (core & imgproc
namespaces, selecting backends);

• Adding more programmability, inference, and streaming is next.

OpenCV 4.4 G-API: Overview and programming by example 29

Latest features

Python API

import numpy as np
import cv2 as cv

sz = (1280, 720)
in1 = np.random.randint(0, 100, sz).astype(np.uint8)
in2 = np.random.randint(0, 100, sz).astype(np.uint8)

g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
gr = cv.GComputation(g_in1, g_in2, g_out)

pkg = cv.gapi.core.fluid.kernels()
out = gr.apply(in1, in2, args=cv.compile_args(pkg))

OpenCV 4.4 G-API: Overview and programming by example 30

Understanding the "G-Effect"

Understanding the "G-Effect"

What is "G-Effect"?

• G-API is not only an API, but also an implementation;
• i.e. it does some work already!

• We call "G-Effect" any measurable improvement which G-API
demonstrates against traditional methods;

• So far the list is:
• Memory consumption;
• Performance;
• Programmer efforts.

Note: in the following slides, all measurements are taken on Intel®
Core™-i5 6600 CPU.

OpenCV 4.4 G-API: Overview and programming by example 31

Understanding the "G-Effect"

Memory consumption: Sobel Edge Detector

• G-API/Fluid backend is designed to minimize footprint:

Input OpenCV G-API/Fluid Factor
MiB MiB Times

512 x 512 17.33 0.59 28.9x
640 x 480 20.29 0.62 32.8x
1280 x 720 60.73 0.72 83.9x
1920 x 1080 136.53 0.83 164.7x
3840 x 2160 545.88 1.22 447.4x

• The detector itself can be written manually in two for loops,
but G-API covers cases more complex than that;

• OpenCV code requires changes to shrink footprint.
OpenCV 4.4 G-API: Overview and programming by example 32

Understanding the "G-Effect"

Performance: Sobel Edge Detector

• G-API/Fluid backend also optimizes cache reuse:

Input OpenCV G-API/Fluid Factor
ms ms Times

320 x 240 1.16 0.53 2.17x
640 x 480 5.66 1.89 2.99x
1280 x 720 17.24 5.26 3.28x
1920 x 1080 39.04 12.29 3.18x
3840 x 2160 219.57 51.22 4.29x

• The more data is processed, the bigger "G-Effect" is.

OpenCV 4.4 G-API: Overview and programming by example 33

Understanding the "G-Effect"

Relative speed-up based on cache efficiency

QVGA VGA HD FHD UHD
1

1.5

2

1

1.38
1.51 1.46

1.97

Image size

R
el
at
iv
e
sp
ee
d-
up

The higher resolution is, the higher relative speed-up is (with
speed-up on QVGA taken as 1.0).

OpenCV 4.4 G-API: Overview and programming by example 34

Resources on G-API

Resources on G-API

Repository

• https://github.com/opencv/opencv (see modules/gapi)

Article

• https://opencv.org/
hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/

Documentation

• https://docs.opencv.org/4.4.0/d0/d1e/gapi.html

Tutorials

• https://docs.opencv.org/4.4.0/df/d7e/tutorial_
table_of_content_gapi.html

OpenCV 4.4 G-API: Overview and programming by example 35

https://github.com/opencv/opencv
https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/
https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/
https://docs.opencv.org/4.4.0/d0/d1e/gapi.html
https://docs.opencv.org/4.4.0/df/d7e/tutorial_table_of_content_gapi.html
https://docs.opencv.org/4.4.0/df/d7e/tutorial_table_of_content_gapi.html

Thank you!

	G-API: What is, why, what's for?
	Programming with G-API
	Inference and Streaming
	Latest features
	Understanding the "G-Effect"
	Resources on G-API
	Thank you!

